Natural abundance high field (43)Ca solid state NMR in cement science.

نویسندگان

  • Igor L Moudrakovski
  • Rouhollah Alizadeh
  • James J Beaudoin
چکیده

This work is a systematic attempt to determine the possibilities and the limitations of the (43)Ca high field solid state NMR in the study of cement-based materials. The low natural abundance (0.135%) and small gyromagnetic ratio of (43)Ca present a serious challenge even in a high magnetic field. The NMR spectra of a number of cement compounds of known structure and composition are examined. The spectra of several phases important in cement science, e.g., anhydrous beta di-calcium silicate (beta-C(2)S) and tri-calcium (C(3)S) silicate were obtained for the first time and the relation of spectroscopic and structural parameters is discussed. The method was also applied to the hydrated C(3)S and synthetic calcium silicate hydrates (C-S-H) of different composition in order to understand the state of calcium and transformations in the structure during hydrolysis. The spectra of hydrated C(3)S reveals a calcium environment similar to that of the C-S-H samples and 11 A Tobermorite. These observations support the validity of using layered crystalline C-S-H systems as structural models for the C-S-H that forms in the hydration of Portland cement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium-43 chemical shift and electric field gradient tensor interplay: a sensitive probe of structure, polymorphism, and hydration.

Calcium is the 5th most abundant element on earth, and is found in numerous biological tissues, proteins, materials, and increasingly in catalysts. However, due to a number of unfavourable nuclear properties, such as a low magnetogyric ratio, very low natural abundance, and its nuclear electric quadrupole moment, development of solid-state (43)Ca NMR has been constrained relative to similar nuc...

متن کامل

Alkaline-earth metal carboxylates characterized by 43Ca and 87Sr solid-state NMR: impact of metal-amine bonding.

A series of calcium and strontium complexes featuring aryl carboxylate ligands has been prepared and characterized by alkaline-earth ((43)Ca and (87)Sr) solid-state NMR experiments in a magnetic field of 21.1 T. In the 11 compounds studied as part of this work, a range of coordination motifs are observed including nitrogen atom binding to Ca(2+) and Sr(2+), a binding mode which has not been inv...

متن کامل

Exploring the limits of (73)Ge solid-state NMR spectroscopy at ultrahigh magnetic field.

The ultrahigh field natural abundance (73)Ge solid-state wide-line NMR study of germanium dichloride complexed with 1,4-dioxane and tetraphenylgermane yields the largest (73)Ge quadrupolar coupling constant determined by NMR spectroscopy to date and the first direct observation of (73)Ge chemical shift anisotropy.

متن کامل

Boronate ligands in materials: determining their local environment by using a combination of IR/solid-state NMR spectroscopies and DFT calculations.

Boronic acids (R-B(OH)(2)) are a family of molecules that have found a large number of applications in materials science. In contrast, boronate anions (R-B(OH)(3)(-)) have hardly been used so far for the preparation of novel materials. Here, a new crystalline phase involving a boronate ligand is described, Ca[C(4)H(9)-B(OH)(3)](2), which is then used as a basis for the establishment of the spec...

متن کامل

(15)N-(1)H bond length determination in natural abundance by inverse detection in fast-MAS solid-state NMR spectroscopy.

A solid-state 15N-1H correlation NMR experiment is presented, which provides a substantial gain in signal sensitivity by 1H inverse detection under fast MAS conditions and allows for the precise determination of NH bond lengths via heteronuclear 1H-15N dipole-dipole couplings on samples naturally abundant in 15N. Pulsed-field gradients or, alternatively, radio frequency pulses ensure suppressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 26  شماره 

صفحات  -

تاریخ انتشار 2010